Introduction

The picoIO expansion board adds digital inputs, digital outputs and analog inputs to the picoFlash single board computer. The picoIO stacks on top of the picoFlash without the need for cabling. A 9-pin connector is provided on the picoIO that brings out the picoFlash Serial Debug Port so that it can be used with a standard 9-pin ribbon cable. A library of C and Quickbasic functions is supplied to facilitate your applications development.

Specifications:

Digital Inputs

32 total, 4 with 10 k ohm pull up resistors TTL compatible

Digital Outputs

20 total TTL compatible, 25mA source and sink

Analog Inputs

12 bits, 11 channels Input range 0 to 5.000 volts Resolution 1.22mV Each channel op-amp buffered and low-pass filtered Precise input impedance of 100.7 k ohms Accuracy by design of 1%, typical accuracy of .1% 11th channel can be configured for on-board temperature measurement Sample rate of better than 100 kHz achievable

Software Drivers

Unified A/D and digital I/O driver for C/C++ and Quickbasic Matrix Keypad driver Alphanumeric LCD driver

System Requirements

picoFlash SBC Stacking Standoffs

Configuration

The only hardware configuration required is analog input 11. JP1, in the upper right hand corner of the board, can be used to connect analog input 11 to the output of an on-board thermistor. Set the jumper to the right (1-2) for a thermistor temperature measurement and to the left (2-3) for use as a voltage input.

Installation

The picoIO mounts over the picoFlash board with 4 stacking standoffs. Three header connectors mounted on the bottom of the picoIO make electrical connection to the picoFlash.

To install the picoIO, first remove the 4 screws from the picoFlash that hold the short standoffs in place. Set the screws aside and replace them with the stacking standoffs. When you are done, the short standoffs should be on the bottom of the board and the tall stacking standoffs should be on top. Connect any cables to the picoFlash and gently mate the picoIO to the top of it. All four holes on top of the picoIO should line up with the four stacking standoffs. Use the four screws to secure the picoIO to the picoFlash.

The maximum current that can be supplied from a single digital output is 25 milliamperes and the total current from all of the outputs must not exceed 330mA. The digital outputs do not supply enough current to drive a solenoid, a motor or an incandescent lamp. If you need more current, use a Driver16 board between the picoIO and your load. See the document "Switching Inductive Loads" on the JK microsystems web site before connecting any inductive load to a JK microsystems controller.

The voltage applied to the digital and analog inputs must never go more negative than 0 volts nor more positive than +5 volts. Voltages applied outside this range may damage the picoIO or picoFlash and void the warranty.

[•]

Software Overview

The following software drivers and applications are supplied with the picoIO board:

PIO_DRVR.ASM, PIO_DRVR.OBJ, PIO_DRVR.H

PIO_DRVR.ASM is the assembly language source code for the picoIO board driver. The supplied object file (PIO_DRVR.OBJ) can be linked with a large memory model C/C++, Quickbasic or Powerbasic program. PIO_DRVR.H contains the C function prototypes. Care must be taken to ensure that the memory model of the driver matches the memory model of the application. The driver memory model is specified near the top of the PIO_DRVR.ASM code with the 'largemodel' constant. The driver must be reassembled after changing the memory model. If Borland C and its IDE are used, it is recommended to attach the assembly language source file to the project rather than object code. When the project is built, the driver will automatically be assembled and linked with the other modules. See the JK microsystems application note "Getting Started with the Borland IDE" for more information about adding project nodes and memory models.

C_PIO.EXE, C_PIO.C and C_PIO.IDE

C_PIO is a C program that demonstrates the functions of the picoIO and how to use them via the PIO_DRVR.ASM driver. The source is supplied as C_PIO.C and C_PIO.IDE.

PIO.BAS and PIO.EXE

PIO.BAS is a Quickbasic program that demonstrates the functions of the picoIO and how to use them via the PIO_DRVR.OBJ driver. The source code is supplied as PIO.BAS.

PICOIO.EXE, PICOIO.C, PICOIO.IDE and PICOIO.PDF

PICOIO.EXE is a C program that demonstrates the remote TCP/IP communications abilities of the picoFlash and picoIO along with an example of a keypad and LCD local user interface. A local user can read the A/D and digital inputs from a LCD and change the digital outputs from a hex keypad. Remote users can telnet into the picoFlash and monitor all of the I/O. See the document PICOIO.PDF for more information.

LCD_PIO.COM

LCD_PIO.COM is a DOS TSR driver that uses the digital I/Os on J8 to communicate with an alphanumeric LCD. See Appendix A for cabling and programming information.

KEY_PIO.COM

KEY_PIO.COM is a DOS TSR driver that uses the digital I/Os on J8 to communicate with a 4x4 or smaller matrix keypad. See Appendix B for cabling and programming information.

Driver Functions Overview

The picoIO driver contains routines callable from C or Quickbasic. This library allows easy access to the various functions of the picoIO board. Although the C and BASIC routines have common names, the C routines are functions (returning values when required) and the BASIC routines are subroutines (results are returned in variables passed to the subroutine). Functionally they are identical.

All values passed and returned from the library functions are 16 bits wide. Many functions do not use all 16 bits, but the complete word is required. When the complete word is not used, data fills the low order bits and the high order bits are unused and ignored. In the following descriptions, C function syntax is shown first and BASIC syntax, where different, is shown in brackets ([]).

Driver Functions

int GetVersion() [GetVersion(data)]

Returns the version number of the driver. Least significant digit is minor revision. Most significant digits are major revision.

void InitIO()

Initializes the picoIO board. Must be performed once before any function except GetVersion is called.

void SetIOPt(value)

Sets the specified output channel. *value* refers to a channel and ranges from 0 to 19. Channels 0-3 not available if keypad driver used, Channels 4-10 not available if LCD driver used.

void ClrIOPt(value)

Clears the specified output channel. *value* refers to a channel and ranges from 0 to 19. Channels 0-3 not available if keypad driver used, Channels 4-10 not available if LCD driver used.

int GetIOPt(value) [GetIOPt(data)]

Returns the input state from the specified input channel, 0 = OFF, non-zero = ON (logic high) *value* refers to a channel and ranges from 0 to 31, Channels 28-31 not available if keypad driver used.

int GetAD(value) [GetAD (data)]

Returns the input value from the specified AD channel, return value ranges from 0 to 4095 *value* refers to a channel and ranges from 0 to 10.

Connectors

Interface connectors use Molex C-Grid style housings and pins or equivalent.

Connector	Description	Molex Part No.	JKmicro Part No.
J1, J2, J4	2x5 0.1" Housing	22-55-2101	28-0030
J6, J7, J8	2x13 0.1" Housing	22-55-2261	28-0031
All	Pins	16-02-0096	28-0033
All	Crimping Tool	11-010208	Not stocked

Connector Pinouts

J1 AD 0-5			
AD0 ¹	1	2	AD3 ¹
AD1 ¹	3	4	AD4 ¹
AD2 ¹	5	6	AD5 ¹
4.096V ³	7	8	GND
5V	9	10	GND

J7		D	IGITAL 3
GND	1	2	5V
GND	3	4	5V
GND	5	6	3.3V ⁷
IN0	7	8	IN2
IN1	9	10	IN3
IN4	11	12	IN12
IN5	13	14	IN13
IN6	15	16	IN14
IN7	17	18	IN15
IN8	19	20	IN16
IN9	21	22	IN17
IN10	23	24	IN18
IN11	25	26	IN19

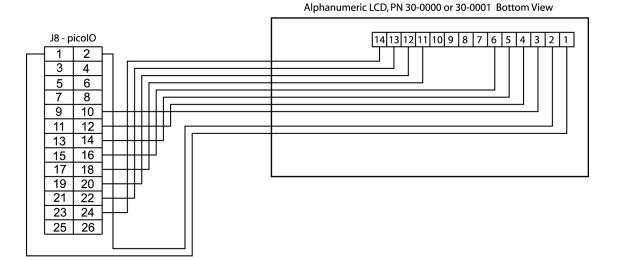
J2			AD 6-10
AD6 ¹	1	2	AD9 ¹
AD7 ¹	3	4	AD10 ^{1,2}
AD8 ¹	5	6	N/C
4.096V ³	7	8	GND
5V	9	10	GND

J8			DIGITAL 1
GND	1	2	5V
GND	3	4	5V
GND	5	6	3.3V ⁷
GND	7	8	3.3V ⁷
J5-8 ⁸	9	10	CONT ⁹
OUT0 ¹¹	11	12	OUT4 ¹²
OUT1 ¹¹	13	14	OUT5 ¹²
OUT2 ¹¹	15	16	OUT6 ¹²
OUT3 ¹¹	17	18	OUT7 ¹²
IN28 ^{4,11}	19	20	OUT8 ¹²
IN29 ^{4,11}	21	22	OUT9 ¹²
IN30 ^{4,11}	23	24	OUT10 ¹²
IN31 ^{4,11}	25	26	OUT11

J4	DEBUG I/O			
DCD^4	1	1 2 N/C		
TXD ⁵	3	4	CTS ⁴	
RXD⁵	5	6	RTS⁴	
N/C	7	8	TTLTX ⁶	
GND	9	10	TTLRX ⁶	

J6			DIGITAL 2
GND	1	2	5V
GND	3	4	5V
CLK ¹⁰	5	6	3.3V ⁷
STB/ ¹⁰	7	8	DATA ¹⁰
CLR/ ¹⁰	9	10	SO ¹⁰
IN20	11	12	OUT12
IN21	13	14	OUT13
IN22	15	16	OUT14
IN23	17	18	OUT15
IN24	19	20	OUT16
IN25	21	22	OUT17
IN26	23	24	OUT18
IN27	25	26	OUT19

Notes:


- 1. Analog input, 0 5.00 volts DC.
- 2. Jumper selectable, analog input or thermistor.
- 3. 4.096 volts +/- 0.1% buffered reference, do not draw more than 2mA.
- 4. Pulled up to +5 volts with 10k resistor.
- 5. picoFlash debug port RS-232 signals.
- 6. picoFlash serial port 0 TTL signals, polarity opposite from RS-232.
- 7. 3.3 volts from picoFlash, do not draw more than 200mA.
- 8. Reserved for possible input expansion.
- 9. LCD contrast voltage.
- 10. Reserved for possible output expansion.
- 11. Not available for general use if hex keypad installed.
- 12. Not available for general use if LCD installed.

JK microsystems

Appendix A - LCD Interface

Electrical Interface

Connect the LCD to the picoIO as shown below.

The following chart details the cable pinout and signal names used for connecting an LCD to the picoIO. The signal names are given for information only and are not needed for normal operation of the LCD.

LCD Pin	picolO J8 Pin	LCD Signal	picolO Signal
1	1	Gnd	Gnd
2	2	+5 Volts	+5 Volts
3	10	Contrast	Cont
4	12	RS	OUT4
5	14	R/W	OUT5
6	16	Е	OUT6
7	N/C	D0 ¹	N/C
8	N/C	D1 ¹	N/C
9	N/C	D2 ¹	N/C
10	N/C	D3 ¹	N/C
11	18	D4	OUT7
12	20	D5	OUT8
13	22	D6	OUT9
14	24	D7	OUT10

Notes:

1. The LCD is always operated in 4-bit mode to conserve I/O pins. In 4-bit mode, D0-D3 are not used and are not connected.

Driver Software

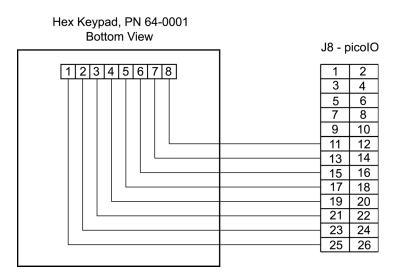
LCD_PIO.COM is a terminate and stay resident (TSR) driver program which redirects data sent to LPT1 to an LCD device connected to J8 of the picoIO. The driver is designed to work with standard alpha-numeric displays using a 14-pin interface and the Hitachi HD44780A controller chip. The LCD used must be capable of operating in 4-bit mode.

Upload the program LCD_PIO.COM to the picoFlash and execute it. LCD_PIO may be placed in the STARTUP.BAT file so that it loads each time the board is reset.

Data is written to the LCD(s) by sending data to LPT1. This can be done at the BIOS level through int 17h or through the DOS LPT1 handler. Instruction codes are sent by first sending a 160 decimal (A0 hex) code to the display. The handler will not send the 160 code to the display but will issue the following byte to the display as an instruction code. Note that when performing the Function Set instruction, the display must always be set to 4-bit data length.

The following Quickbasic code will initialize the display and then show and update the time on it.

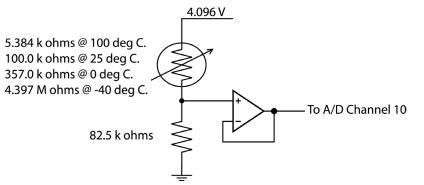
start:	
open "o",1,"lpt1"	
print #1,chr\$(160);chr\$(40);	'4 bits, 2 lines, 5x7 matrix
print #1,chr\$(160);chr\$(12);	'display on, cursor and blink off
print #1,chr\$(160);chr\$(6);	'increment cursor, no display shift
print #1,chr\$(160);chr\$(1);	'clear and home display
timeloop:	
print #1,chr\$(160);chr\$(3);time\$; 'home cursor and print time
if inkey\$="" then goto timeloop	
end	


See www.jkmicro.com/tutorials/lcdprogramming.html for more information.

Appendix B - Hex Keypad Interface

Electrical Interface

Connect the Hex Keypad to the picoIO as shown below.


Driver Software

Upload the program KEY_PIO.COM to the picoFlash and execute it. Key presses from the hex keypad should appear as console input. KEY_PIO.COM may be placed in the STARTUP.BAT file so that it loads each time the board is reset.

JK microsystems

Appendix C – Thermistor

Channel 10 of the analog inputs can be jumpered to measure the voltage across a 100 k ohm thermistor. A simplified circuit diagram of the thermistor input is shown below.

Determining the Thermistor Resistance

The first step is to determine the current through the thermistor and the 82.5 k ohm resistor. We can do that by reading the A/D, dividing that value by 1000 to convert it to volts, then dividing it by 82,500 to get current.

Next we have to find the voltage across the thermistor. We can find this by subtracting the A/D voltage from 4.096. By taking this value and dividing it by the current, we have the thermistor resistance.

Determining the Thermistor Temperature

Since the thermistor's temperature response is highly non-linear, we can't just do an interpolation to find the temperature. The chart at the right shows the resistance of the thermistor to temperatures ranging from -40 degrees C. to 125 degrees C.

The two demo programs included with the picoIO use a lookup table to find the nearest 5 degree temperature of the thermistor and then use a linear interpolation formula to estimate the temperature within .1 degree C. This method returns temperature accurate to better than 1 degree C. at room temperature.

It is the user's responsiblility to determine this algorithm's overall accuracy and suitability for his or her design.

Temp.	NCP	WF104J	type	
(°C)	Resistance (kΩ)			
	Low	Center	High	
-40	3729.0380	4397.1193	5171.9295	
-35	2647.2336	3088.5989	3594.5428	
-30	1902.5755	2197.2250	2531.1628	
-25	1383.3182	1581.8805	1804.4223	
-20	1016.2022	1151.0367	1300.5024	
-15	754.3293	846.5788	947.7345	
-10	565.4664	628.9882	697.8966	
-5	427.6799	471.6321	518.8009	
0	326.4567	357.0117	389.4505	
5	251.2051	272.4995	294.8601	
10	194.8470	209.7098	225.1420	
15	152.2795	162.6506	173.2936	
20	119.8614	127.0802	134.3970	
25	95.0000	100.0000	105.0000	
30	74.7365	79.2216	83.7660	
35	59.1874	63.1671	67.2459	
40	47.1711	50.6766	54.3066	
45	37.8301	40.9035	44.1161	
50	30.5087	33.1946	36.0267	
55	24.7475	27.0909	29.5820	
60	20.1817	22.2243	24.4126	
65	16.5424	18.3225	20.2434	
70	13.6319	15.1841	16.8709	
75	11.2813	12.6354	14.1166	
80	9.3830	10.5657	11.8678	
85	7.8382	8.8726	10.0184	
90	6.5752	7.4811	8.4905	
95	5.5415	6.3365	7.2274	
100	4.6855	5.3839	6.1709	
105	3.9793	4.5942	5.2910	
110	3.3918	3.9342	4.5520	
115	2.9011	3.3804	3.9291	
120	2.4918	2.9164	3.4048	
125	2.1455	2.5220	2.9573	

Thermistor resistance chart abstracted from muRata *NTC Thermistor* manual.

Revision	Date	Author	Changes
A	05 Aug 04	JDS/ED	First Issue \\Server1\D_Parts\94-0032\Manual\picoI0_man.doc

JK microsystems