
Calling CSPD.COM Functions from Quickbasic

JK microsystems, Inc. http://www.jkmicro.com

Initial configuration

The Quickbasic libraries, as shipped from Microsoft, do not have support for the Call Interrupt
statement that must be used to talk to CSPD.COM. Call Interrupt is supplied in the library
QB.LIB. The easiest way to solve this problem is to merge QB.LIB with BCOM45.LIB and
BRUN45.LIB with Microsoft’s library manager LIB.EXE. Here’s a quick way to do it at the
command line.

Rename BCOM45.LIB _BCOM45.LIB
Run LIB.EXE
At the Library Name prompt, enter BCOM45.LIB
At the Create? prompt, enter Y
At the Operations? prompt, enter _BCOM45.LIB QB.LIB

Ignore the warning message. The resulting BCOM45.LIB now has support for the Call
Interrupt statement. The same operations can be performed on BRUN45.LIB if you use it
instead of BCOM45.LIB.

The following short program can be used to test the merged BCOM45 and BRUN45 libraries.
The program will call interrupt 1Ah to get the timer tick and will display it on the console until
a key is hit. The program is saved as TICK.BAS

start:
'$include: 'qb.bi' ' include call interrupt basic code
open "o",1,"cons:" ' open console out

dim InRegs as RegType, OutRegs as RegType 'setup arrays for registers

TickLoop:
Inregs.ax=0 ' AH = 0, get timer tick
call interrupt (&h1A,Inregs,OutRegs) ' call interrupt 1Ah
print #1,hex$(OutRegs.dx);chr$(&hD); ' print dx followed by return
if inkey$="" then goto TickLoop ' loop til key hit
end

Compile the program at the command line and run it. It should work on both your develop-
ment system and your controller board. Note that the ability to call DOS and BIOS interrupts
from Quickbasic is a powerful tool and can be used for other purposes besides accessing
CSPD.

Some CSPD Examples

Before running any of these programs on your controller, be sure to first run CSPD.COM
Running CSPD causes it to hook interrupt 63h and remain resident in memory.

The following example, HELLO.BAS will set serial port 0 to 4800 baud with no handshaking
and send the text string “hello, world” out the port.

Calling CSPD.COM Functions from Quickbasic

JK microsystems, Inc. http://www.jkmicro.com

start:
'$include: 'qb.bi' ' include call interrupt basic code
open "o",1,"cons:" ' open console out

dim InRegs as RegType, OutRegs as RegType 'setup arrays for registers

' Set Port 0 baud rate to 4800

Inregs.ax=&h20*&h100 ' ah=function 20h, al=0
Inregs.dx=0 ' port 0
Inregs.bx=4800 ' 4800 baud
call interrupt (&h63,Inregs,OutRegs)

' Set Port 0 transmit to no handshaking

Inregs.ax=&h13*&h100 ' ah=function 13h, al=0
Inregs.dx=0 ' port 0
call interrupt (&h63,Inregs,OutRegs)

' Send Hello World out Port 0

OutString$="hello, world" ' here's our string
OutString$=OutString$+chr$(13)+chr$(10) ' add CR,LF to string

for i=1 to len(OutString$)
Inregs.ax=(&h10*&h100)+asc(mid$(OutString$,i,1))
Inregs.dx=0
call interrupt (&h63,Inregs,OutRegs)

next i
end

Here is an example of receiving a string of characters from Serial Port 0. The string is
assumed to be terminated with a carriage return. After the string is received, it is printed on
the console. 4800 baud and no handshaking is used.

start:
'$include: 'qb.bi' ' include call interrupt support code
open "o",1,"cons:" ' open console out

dim InRegs as RegType, OutRegs as RegType 'setup arrays for registers

' Set Port 0 baud rate to 4800

Inregs.ax=&h20*&h100 ' ah=function 20h, al=0
Inregs.dx=0 ' port 0
Inregs.bx=4800 ' 4800 baud
call interrupt (&h63,Inregs,OutRegs)

' Set Port 0 receive to no handshaking

Inregs.ax=&h3*&h100 ' ah=function 13h, al=0
Inregs.dx=0 ' port 0
call interrupt (&h63,Inregs,OutRegs)

InString$=""
LastChar$=""

Calling CSPD.COM Functions from Quickbasic

JK microsystems, Inc. http://www.jkmicro.com

while LastChar$<>chr$(13) ' loop til CR char
Inregs.ax=0 ' get char function
Inregs.dx=0 ' port 0

getchar: call interrupt (&h63,Inregs,OutRegs)
Carry%=OutRegs.flags AND 1 ' bit 0 of flags is carry
if Carry%=1 then goto getchar ' no char, loop back
LastChar$=chr$(OutRegs.ax AND &hFF) ' get al and make it char

InString$=InString$+LastChar$
wend

print #1,InString$ ' print the string to console

end

